P2X2/3 and P2X3 receptors contribute to the metaboreceptor component of the exercise pressor reflex.
نویسندگان
چکیده
The exercise pressor reflex is due to activation of thin fiber afferents within contracting muscle. These afferents are in part stimulated by ATP activation of purinergic 2X (P2X) receptors during contraction. Which of the P2X receptors contribute to the reflex is unknown; however, P2X2/3 and P2X3 receptor subtypes are good candidates because they are located on thin fiber afferents and are involved in sensory neurotransmission. To determine if P2X2/3 and P2X3 receptors evoke the metabolic component of the exercise pressor reflex, we examined the effect of two P2X2/3 and P2X3 antagonists, A-317491 (10 mg/kg) and RO-3 (10 mg/kg), on the pressor response to injections of α,β-methylene ATP (α,β-MeATP; 50 μg/kg), freely perfused static contraction, contraction of the triceps surae muscles while the circulation was occluded, and postcontraction circulatory occlusion in decerebrate cats. We found that the antagonists reduced the pressor response to α,β-MeATP injection (before Δ 20 ± 3 mmHg; drug Δ 11 ± 3 mmHg; P < 0.05), suggesting the antagonists were effective in blocking P2X2/3 and P2X3 receptors. P2X2/3 and P2X3 receptor blockade reduced the pressor response to freely perfused contraction (before Δ 33 ± 5 mmHg; drug Δ 15 ± 5 mmHg; P < 0.05), contraction with the circulation occluded (before Δ 52 ± 7 mmHg; drug Δ 20 ± 4 mmHg; P < 0.05), and during postcontraction circulatory occlusion (before Δ 15 ± 1 mmHg; drug Δ 5 ± 1 mmHg; P < 0.05). Our findings suggest that P2X2/3 and P2X3 receptors contribute to the metabolic component of the exercise pressor reflex in decerebrate cats.
منابع مشابه
Acid-sensing ion channels contribute to the metaboreceptor component of the exercise pressor reflex.
The exercise pressor reflex is evoked by both mechanical and metabolic stimuli arising in contracting skeletal muscle. Recently, the blockade of acid-sensing ion channels (ASICs) with amiloride and A-316567 attenuated the reflex. Moreover, amiloride had no effect on the mechanoreceptor component of the reflex, prompting us to determine whether ASICs contributed to the metaboreceptor component o...
متن کاملP2X2 and P2X3 receptor expression in postnatal and adult rat urinary bladder and lumbosacral spinal cord.
P2X receptors mediate the effects of ATP in micturition and nociception. During postnatal maturation, a spinobulbospinal reflex and voluntary voiding replace primitive voiding reflexes. This may involve changes in neuroactive compounds and receptors in bladder reflex pathways. We examined P2X2 and P2X3 receptors in bladder and spinal cord from postnatal (P0-P36, indicating number of days) and a...
متن کاملChanges in P2X receptor responses of sensory neurons from P2X3-deficient mice.
Dorsal root ganglion (DRG) neurons respond to ATP with transient, persistent or biphasic inward currents. In contrast, the ATP responses in nodose neurons are persistent. These sustained currents are also heterogeneous, with one component being accounted for by P2X2/3 receptors, and the residual response probably mediated by P2X2 receptors, although the direct evidence for this has been lacking...
متن کاملSpinal estrogen attenuates the exercise pressor reflex but has little effect on the expression of genes regulating neurotransmitters in the dorsal root ganglia.
Previously, our laboratory showed that estrogen, topically applied to the spinal cord, attenuated the exercise pressor reflex in female cats (Schmitt PM and Kaufman MP. J Appl Physiol 95: 1418-1424, 2003; 98: 633-639, 2005). The attenuation was gender specific and was in part opioid dependent. Our finding that the mu- and delta-opioid antagonist naloxone was only able to partially restore estro...
متن کاملDeletion of P2X2 and P2X3 Receptor Subunits Does Not Alter Motility of the Mouse Colon
Purinergic P2X receptors contribute to neurotransmission in the gut. P2X receptors are ligand-gated cation channels that mediate synaptic excitation in subsets of enteric neurons. The present study evaluated colonic motility in vitro and in vivo in wild type (WT) and P2X2 and P2X3 subunit knockout (KO) mice. The muscarinic receptor agonist, bethanechol (0.3-3 muM), caused similar contractions o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of applied physiology
دوره 109 5 شماره
صفحات -
تاریخ انتشار 2010